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In this paper we discuss numerical simulations of the generation of large-amplitude
solitary waves in a continuously stratified fluid by flow over isolated topography. We
employ the fully nonlinear theory for internal solitary waves to classify the numerical
results for mode-1 waves and compare with two classes of approximate theories,
weakly nonlinear theory leading to the Korteweg–deVries and Gardner equations and
conjugate flow theory which makes no approximation with respect to nonlinearity,
but neglects dispersion entirely. We find that both weakly nonlinear theories have a
limited range of applicability. In contrast, the conjugate flow theory predicts the nature
of the limiting upstream propagating response (a dissipationless bore), successfully
describes the bore’s vertical structure, and gives a value of the inflow speed, cj , above
which no upstream propagating response is possible. The numerical experiments
demonstrate the existence of a class of large-amplitude response structures that are
generated and trapped over the topography when the inflow speed exceeds cj . While
similar in structure to fully nonlinear solitary waves, these trapped disturbances can
induce isopycnal displacements more than 100 % larger than those induced by the
limiting solitary wave while remaining laminar. We develop a theory to describe the
vertical structure at the crest of these trapped disturbances and describe its range
of validity. Finally, we turn to the generation of mode-2 solitary-like waves. Mode-2
waves cannot be truly solitary owing to the existence of a small mode-1 tail that
radiates energy downstream from the wave. We demonstrate that, for stratifications
dominated by a single pycnocline, mode-2 wave dissipation is dominated by wave
breaking as opposed to mode-1 wave radiation. We propose a phenomenological
criterion based on weakly nonlinear theory to test whether mode-2 wave generation
is to be expected for a given stratification.

1. Introduction
The suggestion that vertically trapped solitary waves may exist in the interior

of a density stratified fluid dates back to the early work of Benney (1966), who
showed that an asymptotic expansion of the stratified non-rotating Euler equations
in two parameters (an amplitude parameter and a parameter measuring the aspect
ratio) yields the Korteweg–deVries (KdV) equation for the horizontal structure of
the perturbations from a background state. The background state consists of a
statically stable vertical density stratification profile, which provides the restoring
force for the waves of interest, and (optionally) a horizontal background current. The
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background shear flow, if any, is assumed to be linearly stable. It is well known that
the KdV equation serves as the generic model of a nonlinear dispersive system in
the long-wave limit, and hence allows solitary wave solutions that balance dispersion
and nonlinearity (see, for example, Whitham 1974). Furthermore, a general initial
condition evolves into a fixed number of rank-ordered solitary waves and a tail of
small dispersive waves. Indeed, the initial-value problem for the KdV equation on an
unbounded domain can be solved analytically by the celebrated method of inverse
scattering (Whitham 1974), a truly remarkable property for a nonlinear equation.

Large-amplitude vertically trapped internal waves have been generated in the
laboratory (Melville & Helfrich 1987; Grue et al. 2000) and observed in a number of
locations in the ocean (Osborne & Burch 1980; Apel et al. 1985; Cummins et al.
2003). These have often been interpreted as internal solitary waves, though the
physical situation, especially in the ocean, is generally quite complex and it is unlikely
that the observed waves are true solitary waves in the language of a theorist. What
is more, it has been shown (Lamb 1997) that large-amplitude internal solitary waves
in a stratified fluid do not interact as solitary wave solutions of completely integrable
equations, such as the KdV and Gardner equations, do, and hence are not solitons,
according to the mathematical definition. Nevertheless, the observed waves are both
stable and persistent and the theory, both weakly nonlinear (WNL) and exact, has
provided a framework within which to discuss both experiment and observations.

In this paper, we present numerical simulations of the two-dimensional non-rotating
Euler equations under the Boussinesq approximation demonstrating that the topo-
graphic or resonant generation mechanism is an efficient means for generating large-
amplitude mode-1 internal solitary waves (ISWs). The generated waves are shown to
match fully nonlinear ISWs, which are exact solutions of the full Euler equations. We
discuss conditions under which the full range of ISW amplitudes predicted by the exact
theory can be generated and provide a physical mechanism to explain cases in which
this is not the case. Perhaps most importantly, we explicitly demonstrate the existence
of a parameter regime in which the fluid response consists of extremely large, highly
nonlinear, yet laminar, disturbances that are trapped over the topography. These
trapped disturbances have a spatial structure that is similar to fully nonlinear ISWs
of depression, but have an amplitude that is well above (more than double in certain
cases) the limiting solitary wave amplitude. We develop a simple theory to describe
the vertical structure at the crest of the trapped disturbances. This theory is based on
the conjugate flow theory as discussed in Lamb & Wan (1998), for example, but has
important mathematical differences that will be discussed in the following.

As weakly nonlinear theory dominates the interpretations of oceanographic
measurements (Osborne & Burch 1980; Apel et al. 1985; Bougucki, Dickey &
Redekopp 1997; Trevorrow 1998), we perform extensive comparisons of the results
of our simulations with weakly nonlinear theory (WNL). We consider WNL for both
freely propagating and topographically forced internal waves. For the former, we
pay particular attention to the substantial literature on two-layer flow, as exemplified
by the monograph of Baines (1995). In Baines (1995), it is argued that the Gardner
equation yields structures that are qualitatively similar to those yielded by experiment.
Unfortunately, the Gardner equation appears in the literature under a variety of names
and in the following we will follow Baines in referring to it as the eKdV equation. The
eKdV includes both a quadratic and cubic nonlinear term and exhibits solitary wave
solutions that are bounded above by the limit of flat-centred waves (as opposed to
breaking waves for the KdV equation). We find that while the eKdV equation provides
a good qualitative description of the fluid response, for undisturbed interface heights
located more than approximately 15 % of the total depth from the mid-depth, the
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amplitude of the limiting solitary wave is significantly underestimated (in agreement
with Baines 1995). The topographically forced weakly nonlinear theory based on
the forced KdV, or fKdV, equation (Grimshaw & Smyth 1986) yields predictions on
the range of inflow speeds that yield upstream propagating solitary waves. We find
that the upper bound is incorrectly predicted by WNL, and that the nature of the
error changes with the undisturbed interface height. The discrepancy between the
simulations and WNL is explained using the conjugate flow theory, an alternative
approximate theory that neglects dispersion altogether, but makes no approximation
regarding nonlinearity. By its construction, conjugate flow theory is well-suited to the
description of the central region of large-amplitude flat-centred waves.

The concept of topographic or resonant (hereinafter resonant only) generation of
large upstream propagating internal waves was described by Grimshaw & Smyth
(1986) who derived a forced KdV (fKdV) equation for the flow of a stratified fluid
over broad small-amplitude isolated topography. The background current (labelled
U ) far upstream of the topography is specified to be independent of depth. The fKdV
equation is not amenable to analytical techniques (such as the inverse scattering
transform), consequently Grimshaw & Smyth (1986) integrated the fKdV equation
numerically and found upstream propagating solitary waves for cases in which U lies
in a band around the mode-1 (mode-n waves have isopycnal deflections that cross
zero n − 1 times in the interior of the fluid), linear longwave speed. Physically, we
imagine that the flow over the topography generates both upstream and downstream
propagating linear, vertically trapped waves. However, when the difference between U

and the mode-1, linear long-wave speed is small, the upstream propagation is retarded
or precluded altogether. The waves thus remain in the forcing region longer, and grow
in amplitude. The growth continues until the waves reach a sufficient amplitude to
move upstream (both weakly nonlinear and fully nonlinear theory predict that larger
waves have larger propagation speeds) and away from the topography.

The literature concerning the weakly nonlinear theory of resonant generation
is voluminous. Recent examples include the work of Porter & Smyth (2002) that
discusses resonant generation in the context of atmospheric ISWs, namely the
morning glory clouds observed near the Gulf of Carpentaria, and the work of
Wang & Redekopp (2001) that derives a model equation allowing for time-dependent
background currents and discusses possible instabilities induced in the bottom
boundary layer by resonantly generated ISWs. The reader is referred to these papers
and the references therein for a more complete bibliography.

A notable shortcoming of weakly nonlinear theories is the lack of a clear upper
bound (in terms of wave amplitude) on their range of applicability. The finite-
amplitude theory of Grimshaw & Zengxin (1991) for a linearly stratified fluid, which
is not weakly nonlinear, but employs the formalism of the weakly nonlinear theory
found in Grimshaw & Smyth (1986) as well as the assumption of a separable solution,
includes a criterion for the onset of overturning, and as such formally describes the full
range of ISW amplitudes. However, the separable (in space) description necessarily
breaks down at the onset of wave breaking and as the theory depends crucially on
the assumption of a constant N 2, the utility of this theory for cases with more general
stratification profiles is unclear.

The weakly nonlinear theory, as presented in Grimshaw & Smyth (1986), makes
no distinction between mode-1 waves and higher-mode waves. Thus, in principle,
resonant generation of mode-2 solitary waves should simply require matching U

to the mode-2, linear long-wave speed. However, it has been shown by Akylas &
Grimshaw (1992) that solitary waves of mode-2 or higher develop oscillatory tails (of
lower mode than the main solitary wave body). As the group speed of the dispersive
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waves that make up the tail is smaller than their phase speed, these tails can radiate
energy from the main wave and hence higher mode waves are not truly solitary.
This means that the exact theory for mode-1 ISWs has no analogue for higher-mode
waves and we discuss, with an example, the possibility of resonantly generating
mode-2 waves and the physical processes leading to wave decay. In particular, we
demonstrate that for a stratification dominated by a single pycnocline, the damping
of mode-2 solitary-like waves owing to wave radiation is small when compared to the
changes of wave shape owing to wave breaking.

Experimental studies of mode-2 solitary-like waves date back to the work of
Davis & Acrivos (1967). Aspects of the generation, propagation, collisions (wave–
wave and wave–wall), and wave decay due to viscous effects of mode-2 waves have
been the subject of recent experimental studies (Stamp & Jacka 1996; Schmidt &
Spigel 2000; Mehta, Sutherland & Kyba 2002). A trailing mode-1 tail is a robust
feature of the experiments, as are regions of overturned isopycnals and localized
turbulence. However, the numerical simulations of mode-2 waves reported in the
literature (Terez & Knio (1998) for unsteady waves; Tung, Chan & Kubota (1982) for
steady waves) actually consider mode-1 waves only. Both sets of authors argue that
once mode-1 waves are computed, the stratification can be extended in a symmetric
manner and mode-2 waves recovered (the figures in both papers are produced in this
manner). While this technique is computationally efficient (the vertical extent of the
domain is halved), it precludes any consideration of the interaction of mode-2 waves
with small-amplitude mode-1 tails. The resonantly generated mode-2 waves in our
simulations have no obvious horizontal lines of symmetry, and this casts some doubt
on the direct relevance to mode-2 solitary-like waves of simulations of mode-1 ISWs.
We proceed to develop a phenomenological criterion based on weakly nonlinear
(KdV) theory to assess whether, given stratification and background current profiles,
we would expect mode-2 waves to be efficiently generated.

In summary, § 2 outlines the theoretical and computational background, § 3 discusses
the generation of mode-1 ISWs and large trapped disturbances, § 4 compares the
present study with previous work on the flow of two-layer fluids over isolated
topography and especially the weakly nonlinear theories employed to interpret
experiments, § 5 addresses the issue of whether resonantly generated mode-2 solitary-
like waves are dominated by wave breaking or a mode-1 tail, and § 6 summarizes
the results. Also in § 6, we discuss the applicability of our simulations to laboratory
experiments and comment on several avenues for future work.

2. Descriptions of ISWs
We consider a non-rotating incompressible inviscid fluid under the Boussinesq

approximation. In a fixed frame of reference with the origin at the ocean floor, the
x-axis parallel to the flat ocean bottom and the z-axis pointing upward (k̂ is the
upward pointing unit vector) the governing equations read,

∂u
∂t

+ u · ∇u = −∇P − ρg k̂ + Fb, (2.1)

∇ · u = 0, (2.2)

∂ρ

∂t
+ u · ∇ρ = 0, (2.3)

where we have divided the momentum equations (2.1) by the constant reference density
ρ0 (and absorbed the constant into the pressure, P , as is conventional). In (2.1), we
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include the non-standard term Fb. This body force (technically an acceleration) term
may be employed to set the fluid in motion over topography in numerical simulations,
and is included only in the numerical formulation of the problem. Throughout, we
assume that a rigid lid exists at z = H and that the fluid motion is two-dimensional.

In order to describe ISWs theoretically, we employ the incompressibility of the fluid
to introduce a streamfunction ψ(x, z, t) so that (u, w) = (ψz, −ψx) where subscripts
denote partial derivatives. For the moment, we assume that there is no background
current. The extension to the case of a background shear flow, U (z), is discussed by
Benney (1966) and Stastna & Lamb (2002), among others. To maintain consistency
with Benney (1966) and Stastna & Lamb (2002), we introduce the buoyancy b =
−gρ = −g(ρ̄(z) + ρ ′(x, z, t)), where ρ̄(z) is the background density or stratification
profile, which we assume to be statically stable. Linearizing and assuming a vertically
trapped form for the disturbance, i.e. ψ = a0 exp (ik(x − ct))ϕ(z), we find that ϕ(z) is
governed by the eigenvalue problem

ϕzz +

(
N2(z)

c2
l

− k2

)
ϕ = 0, (2.4)

ϕ(0) = ϕ(H ) = 0, (2.5)

where

N2(z) = −g
dρ̄(z)

dz
, (2.6)

is the definition of the buoyancy frequency squared (recall we have already scaled
out ρ0). The buoyancy frequency gives the frequency of oscillation of a fluid parcel
infinitesimally displaced from a state of rest at height z. For a statically unstable fluid,
N2 < 0 somewhere in the fluid.

For a general stratification profile, (2.4), (2.5) must be solved numerically. No
generality is lost by focusing on rightward propagating waves, and we shall hereinafter
do so. In the absence of a background shear current, leftward propagating waves
are trivial to recover. In general it is found, and can be proved rigorously (see for
example, Yih 1965), that the propagation speed cl decreases both as the mode number
increases, and as wavelength decreases. Thus, mode-1 long waves (k = 0) propagate
faster than any other vertically trapped linear waves. This, however, is not true for
higher-mode long waves (mode-2 in particular), and it is possible that mode-2 long
waves propagate at the same speed as shorter mode-1 waves. In the following, mode-n
propagation speeds and eigenfunctions in the long-wave limit will be denoted as c

(n)
lw

and φ(n)(z), respectively, where the governing eigenvalue problem reads

φzz +
N2(z)

c2
lw

φ = 0, (2.7)

φ(0) = φ(H ) = 0. (2.8)

As mode-1 ISWs are exceptional, the superscript 1 will be suppressed.
Weakly nonlinear long-wave theory for ISWs (see Benney 1966 or Lamb & Yan

1996 for details) yields, at leading order

ψ =

∞∑
n=1

c
(n)
lw B (n)(x, t)φ(n)(z), (2.9)

b =

∞∑
n=1

N2(z)B (n)(x, t)φ(n)(z). (2.10)
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However, the shape of the horizontal structure is undetermined at leading order. We
concentrate on mode-1 waves and hence drop all other modes from consideration
for the time being. To first-order in the nonlinearity and dispersion parameters, B is
governed by the Korteweg–de Vries (KdV) equation

Bt = −clwBx + 2r10clwBBx + r01Bxxx. (2.11)

The solitary wave solutions of this equation are given by

B(x, t) = −b0sech
2(θ), (2.12)

θ =
x − V t

λ
, (2.13)

V = clw

(
1 + 2

3
r10b0

)
, (2.14)

b0λ
2 = −6

r01

clwr10

. (2.15)

It can be seen that the solitary wave properties (propagation speed, half-width)
depend not only on the wave amplitude b0, but also the so-called nonlinearity (r10)
and dispersion (r01) parameters. These are given by

S =

∫ H

0

(φ′(z))2 dz, (2.16)

r10 = −3

4

∫ H

0

(φ′(z))3 dz

S
, (2.17)

r01 = − 1
2
clw

∫ H

0

(φ(z))2 dz

S
, (2.18)

and as such have a non-trivial dependence on the density stratification (via the
eigenvalue problem (2.7), (2.8)). Since r01 < 0, the linear dispersion relation of (2.11)
demonstrates that longer waves travel faster. In contrast to r01, r10 can take on
either sign. By demanding that λ is real, we find r10b0 > 0 and hence from (2.14) that
larger-amplitude solitary waves travel faster.

If we define the onset of wave breaking as the point at which a streamline, in
a frame moving with the wave, becomes vertical (i.e. ψz =0), then the KdV theory
allows us to find an expression for the breaking amplitude. In the frame moving with
the wave, we have ψ = −V z + clwB(x, t)φ(z). Demanding that ψz = 0 and using the
definition of V (2.14), we find that at the onset of breaking

1 = −b0

(
2
3
r10 + φ′(z)

)
. (2.19)

for some value of z. Of course, this value is not expected to be quantitatively accurate
since breaking is a finite-amplitude phenomenon and a more accurate prediction is
given by fully nonlinear theory as described below.

Finally, if we consider the displacement of an isopycnal passing through the point
(x, z) from its rest height (labelled η), we find that KdV theory gives the expression

ηWNL = B(x, t)φ(z), (2.20)

where the superscript WNL denotes a quantity given by weakly nonlinear theory.
The fully nonlinear theory for ISWs is generally written in terms of the isopycnal

displacement, η(x, z). In the following, we will identify the maximum isopycnal
displacement with the wave amplitude and label it ηmax . Fully nonlinear, rightward
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propagating ISWs in a frame moving with the wave speed are governed by a nonlinear
elliptic eigenvalue problem, namely the Dubreil–Jacotin–Long (DJL) equation

∇2η +
N2(z − η)

c2
η = 0, (2.21)

η = 0 at z = 0, H, (2.22)

η = 0 as |x| −→ ∞, (2.23)

where the propagation speed c is to be determined as part of the solution. Once
η and c are known, the wave-induced velocities are computed from the relation
ψ = cη. To the best of our knowledge, there are no explicit solutions of the DJL
equation when N2 is not constant. The direct variational method due to Turkington,
Eydeland & Wang (1991), which is a component of a rigorous proof of the existence
of fully nonlinear ISWs, has been successfully implemented in several studies of fully
nonlinear ISWs (i.e. Lamb & Wan 1998; Stastna & Lamb 2002; Stastna & Peltier
2004), and will be used throughout this article to compute fully nonlinear ISWs.
In Stastna & Lamb (2002), the processes that provide the upper bound on possible
solitary wave amplitudes for any one stratification–background current combination
are classified into three categories.

(i) Streamline overturning and the formation of a trapped, recirculating core,
which we label the breaking limit.

(ii) Shear instability of the wave-induced currents, which we label the instability
limit.

(iii) Wave broadening to a limiting flat-centred wave, which we label the conjugate
flow limit.
All cases discussed here have ISW amplitude bounded above by the conjugate flow
limit.

We note briefly that the direct variational solution technique fixes the available
potential energy for the ISW a priori and minimizes the perturbation kinetic energy
in the space of disturbances satisfying the boundary conditions. This means that
neither the wave amplitude nor the propagation speed are fixed a priori, this is
especially convenient in computing broad flat-centred ISWs.

Note that the essential difference between the DJL equation and the equation
governing the vertical structure of linear long waves (2.7) is that in the DJL equation
the buoyancy frequency squared is evaluated at the undisturbed isopycnal height
(z − η(x, z)). By demanding an isopycnal displacement that is independent of x (an
excellent approximation in the central region of broad flat-centred waves) we find that
the DJL equation reduces to the nonlinear ordinary differential eigenvalue problem
that governs conjugate flows (Lamb & Wan 1998). The solution of the nonlinear
conjugate flow eigenvalue problem requires an auxiliary condition, which may be
interpreted as the conservation of momentum flux (Lamb & Wan 1998). In order
to determine the fully nonlinear waveform, however, the dispersion due to finite
wavelength (the ηxx term in the DJL equation) is essential. In all cases in which
a single stable mode-1 conjugate flow exists, the conjugate flow speed, which we
label cj , and maximum isopycnal displacement, which we label ηj , provide the upper
bound on ISW propagation speed and amplitude, respectively. We note briefly that
higher-mode conjugate flow solutions also exist, though their significance as an upper
bound to ISW amplitude is unclear (Rusas & Grue 2002).

For the time-dependent simulations of the resonant generation process, the field
equations (2.1)–(2.3) are solved using a variable time step second-order projection
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technique described in Lamb (1994) and Bell & Marcus (1992). Briefly, the model
employs terrain following coordinates, imposes a no-flux boundary condition at the
bottom (z = g(x) with g(x) specified below) and top, and allows the free propagation
of non-hydrostatic waves through the vertical right-hand boundary. At the left-hand
boundary, the influx of fluid is specified (hence, ISWs reflect from the left-hand
boundary and we terminate all simulations before this occurs). There is no damping,
sponge layer, or diffusion (save for the negligible amount due to discretization) in the
model. While certain applications (e.g. sediment resuspension) require the accurate
representation of the viscous bottom boundary layer, the model itself is stable with
no viscosity by virtue of its construction and provides an accurate representation of
the fluid flow unless three-dimensionality of the flow becomes dominant.

We will present the results of our numerical simulations in non-dimensional form.
Towards this end we choose H , the height of the domain, as a typical length scale,
clw , the mode-1 linear long-wave speed as a characteristic velocity, and the advective
time scale T = H/clw as a characteristic time scale.

The shape of the small-amplitude topography employed is given by

g(x) = h sech

(
x

a

)
, (2.24)

where h and a determine the height and width of the topography. We will refer to
cases with h > 0 (< 0) as positive (negative) topography.

Throughout the majority of this paper we will employ a generic stratification for
both a model coastal ocean and a laboratory set-up aiming to model the coastal
ocean. The stratification employed consists of an essentially unstratified mixed layer
adjacent to the upper boundary, a strong subsurface pycnocline located one-fifth of
the water depth below the surface, and a weakly stratified layer below the main
pycnocline. We choose to specify N2(z), the buoyancy frequency squared, using the
analytic expression:

T 2N2(z) = (p − q)sech2

(
z − z0

d

)
+

q

2

[
1 − tanh

(
z − z0

d

)]
. (2.25)

This allows us to identify p − 0.5q with the strength of stratification in the main
pycnocline and q with the strength of stratification in the deep. Throughout this
paper, we set p = 63.1 and q = 3.156. With this choice of parameters the maximum
of N2 is a factor of twenty larger than N 2 at the model ocean bottom, a reasonable,
though non-unique choice for the coastal ocean.

The parameters z0 and d specify the centre and thickness of the main pycnocline,
respectively. All of the simulations discussed in this paper fix d = 0.05. Simulations
involving mode-1 ISWs set z0 = 0.8. For this choice of stratification, both the
amplitude and propagation speed of the the exact ISW solutions are bounded above
by the conjugate flow limit.

Simulations involving mode-2 waves set z0 = 0.55. For all stratifications considered,
ISWs can have a single polarity only, and at most a single stable mode-1 conjugate
flow exists. See Lamb & Wan (1998) for a discussion of stratifications for which
ISWs of depression and elevation are possible. An expression for the density profile
corresponding to (2.25) (which we employ as an initial condition for the density) can
be derived either numerically or analytically from the definition of buoyancy frequency
(2.6). As both the horizontal and vertical velocities are initially taken to vanish, we
require a mechanism for setting the fluid in motion. This may be accomplished by
one of two methods. The first defines a fictitious acceleration on the time interval
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0 < t < Tf , of the form:

Fb =

[
U

Tf

(
1 − cos

(
2πt

Tf

))
, 0

]
, (2.26)

where U is the desired value of the horizontal velocity far upstream, and Tf is the
time period of the forcing. The forcing is assumed to vanish for t > Tf . The second
uses a similar functional form, but specifies the rate of change of the horizontal
velocity at the left-hand boundary.

The merits of the first method are discussed in Stastna & Peltier (2004), though
the latter proves somewhat easier to implement in the numerical model. We have
found that the two methods yield identical results. For an essentially impulsive
start, employed throughout the majority of this paper, unless otherwise noted, we
set Tf =0.035. The combinations of parameters (U, Tf , h, a) and (U, h, a) will be
referred to in the following as the forcing parameters. If Tf is suppressed, it is set to
Tf = 0.035.

Several different resolutions were employed for the simulations discussed in the
following section. In all cases, we have ensured that the results presented are not
influenced by resolution doubling. For all non-breaking mode-1 waves, a vertical
resolution of 0.01 and a horizontal resolution of 0.04 proved sufficient, though all
figures in the following are based on simulations with a resolution of 0.01 by 0.01.
For breaking waves, resolution becomes an issue only after the onset of overturning.
However, at this point in the simulation, three-dimensional effects, neglected in
our study, are expected to play a significant, and perhaps dominant, role. Because
of possible resonance with shorter mode-1 waves (discussed below), the resonant
generation of mode-2 waves required a finer horizontal resolution. For the cases
discussed in the text, we employed a horizontal resolution of 0.005 and a vertical
resolution of 0.005.

3. Generation of mode-1 ISWs
The resonant generation process is illustrated in figure 1 for stratification (2.25)

with (z0, d) = (0.8, 0.05) and forcing parameters (U, h, a) = (0.9, 0.1, 1). For reference,
cj = 1.25. Figure 1(a) shows the shaded density contours in a portion of the
computational domain at t = 135.0. The leading upstream (leftward) propagating
ISW is well upstream of the topography (the white hill in this case). The crest of
the leading ISW (ηmax ≈ 0.11 or about 35 % of the conjugate flow amplitude and
c ≈ 0.91cj ) is indicated by a vertical black line. In figure 1(b), we show the vertical
profile of the wave-induced horizontal velocity at the leading ISW crest extracted
from the simulation, along with two theoretical profiles. The profile of the fully
nonlinear waves is computed using the variational method described in the previous
section, while the wave amplitude in the case of weakly nonlinear theory is chosen
so that the horizontal velocity matches at the surface. It is clear from figure 1(b) that
the velocity profile predicted by the fully nonlinear theory matches that extracted
from the simulation essentially exactly. A similar match between ISWs yielded by the
simulations and fully nonlinear theory was found regardless of ISW amplitude, from
the smallest tried, up to the conjugate flow limit. The weakly nonlinear theory, on
the other hand, gives at best a qualitative approximation. This is especially true since
we ‘tuned’ the wave amplitude in the weakly nonlinear theory to match the vertical
profile of wave-induced horizontal velocity. For the same estimate of amplitude, the
weakly nonlinear prediction of the wave-induced horizontal velocity (the horizontal
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Figure 1. (U, h, a) = (0.9, 0.1, 1). (a) Shaded density contours. The crest of the leading
upstream propagating ISW is shown by a vertical black line. (b) Wave-induced horizontal
velocity at the wave crest. —, simulation; - - -, fully nonlinear theory – · –, leading-order
weakly nonlinear theory with the wave amplitude chosen so that the wave-induced horizontal
velocity at the surface matches the simulation values.
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Figure 2. Hovmöller plots of the wave-induced horizontal velocity at the surface (z = 1). The
shape of the topography is indicated by a black dashed lined. (a) (U, h, a) = (1.12, −0.1, 1),
(b) (U, h, a) = (0.9, 0.1, 1). Note that the ISWs are generated over the downsloping portion of
the topography.

structure is given by the solitary wave solution of the KdV equation, (2.12)) at the
bottom would be very poor. In figure 1(a), a second ISW is propagating down the
upstream slope of the topography, while a third is forming on the downstream slope.
That the ISWs of depression form on the downstream slope is confirmed in figure 2 in
which we show Hovmöller (space–time) plots of the wave-induced horizontal velocity
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Figure 3. Shaded density contours (U, h, a) = (0.955, 0.1, 1). (a) t = 106.8, (b) t = 121. Note
the large response downstream that appears to undergo shear instability while the upstream
response is very similar to figures 1(a) and 2(a).

at the surface (z = 1). The upstream propagating waves appear as dark streaks of
negative velocity that slope up and to the left. For illustrative purposes, the shape of
the topography is indicated by a dashed line. The case shown in figure 2(a) has the
forcing parameters (U, h, a) = (1.12, −0.1, 1). In this case, the upstream propagating
ISWs are larger (ηmax ≈ 0.26 or about 85 % of the conjugate flow amplitude). The
response downstream of the topography, consists of a long wave of elevation that
permanently raises the pycnocline downstream of the topography, but otherwise does
not interfere with the ISW generation process. It can be noted that the second
upstream propagating ISW is about 7 % larger than the first.

For the case of positive topography, the downstream response can be complex, as
is evident from figure 2(b). Indeed, a minor modification of the forcing conditions,
(U, h, a) = (0.955, 0.1, 1), while leaving the upstream response largely unaffected,
leads to the formation of a large-amplitude bore on the downstream side of the
topography. The shaded density contours in the vicinity of the topography are shown
in figure 3. The response downstream of the topography consists of a region of
depressed isopycnals followed by a steep face that raises the isopycnals well above
their far upstream, or undisturbed, positions. Beyond the steep face, the isopycnals
slope downward extremely slowly. The bore terminates well outside of the portion
of the computational domain shown. In figure 3(a) (t = 106.8), we can see that the
steep face and slowly downsloping isopycnals undergo what appears to be a shear
instability. Regions of overturning form rapidly and billows are clearly visible by
t = 121 (figure 3(b)).
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Figure 4. Shaded density contours (U, h, a) = (1.12, 0.1, 1). (a) t =17.8, (b) t = 71.2, (c) t =
213.7. While the value of U far upstream is below cj , the depth-averaged horizontal velocity
at the crest of the topography exceeds cj resulting in wave blocking and no upstream ISW
propagation. The growing lee wave is upstream directed.

The vertically averaged horizontal velocity of the fluid increases over the crest of
the positive topography above its far upstream value. Since upstream propagating
ISWs are generated on the downstream slope of positive topography, beyond U =
(1 − h(0)) cj the wave generated on the downstream slope cannot propagate over the
crest of the topography and upstream. In figure 4, we show shaded density contours
for a simulation with the forcing parameters (U, h, a) = (1.12, 0.1, 1). Figures 4(a),
4(b) and 4(c) show the wave evolution at t = 17.8, 71.2 and 213.7, respectively.
The wave of depression on the downstream slope of the topography connects to
the elevated isopycnals over the topography and terminates with a second region
of elevated isopycnals and a tail of small ISWs and other dispersive waves that
are swept downstream by the background current. As the wave of depression over
the downstream slope increases in amplitude, the downstream region of elevated
isopycnals grows in amplitude and horizontal extent. For long times, the wave of
depression over the downstream slope tends to a flat-centred wave with an amplitude
that is larger than the conjugate flow amplitude (about 135 % of the conjugate flow
amplitude). Crucially, however, it is followed by a downstream region of elevated
isopycnals. Neither of these states is conjugate to the region far upstream of the
topography, though they appear to be conjugate to one another. In principle, a series of
conjugate flow calculations (including shear background currents as necessary) could
be carried out to connect the three states, though this has not been carried out here.
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Figure 5. Shaded vertical velocity contours. Density contours are given by superimposed white
lines. (U, h, a) = (1.236, 0.2, 1). The structure of the wave-induced vertical currents indicates
that the wave is upstream directed, (ηmax, c) = (0.195, −1.208). However, as U > − c, the wave
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Figure 6. Shaded density contours for a slow moving, dissipationless bore as it propagates
upstream. (U, h, a) = (1.236, −0.1, 1) or U = 0.99cj . The vertical black line denotes the region
in which the wave-induced isopycnal displacement and horizontal velocity are given by the
solution to the conjugate flow eigenvalue problem.

As U is increased further, the waves formed on the downstream slope remain on
the downstream slope (the forcing region) for a shorter amount of time before being
swept downstream by the background current. In figure 5, we show the shaded vertical
velocity contours for a simulation with forcing parameters (U, h, a) = (1.236, 0.2, 1).
Superimposed on the shaded vertical velocity contours are white density contours.
Downstream of the topography, we see an ISW of depression (ηmax ≈ 0.195). The
geometrical distribution of the velocity contours indicates that, in a stationary fluid,
the wave would be upstream propagating.

For the cases with negative topography, the flow evolution exhibits consistent
characteristics for a broad range of U values. With h = −0.1, upstream propagating
ISWs are clearly visible for U > 0.88 and increase in amplitude as U increases.
ISWs become noticeably broader once U > 1.15 and when U = 1.236 = 0.99cj , the
upstream propagating wave takes the form of a slow-moving dissipationless bore.
The shaded density contours are shown in figure 6. The vertical black line denotes
the approximate region in which the wave-induced horizontal velocity and isopycnal
profiles match those found by solving the eigenvalue problem governing conjugate
flows, as well as solutions of the DJL equation for a flat-centred ISW.
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Figure 7. Shaded density contours for various trapped disturbances. The amplitude of the
topography is fixed at h = −0.1 and −0.2 for (a)–(c) and (d)–(f ), respectively. The upstream
velocity and approximate disturbance amplitude are: (a) U = 1.35=1.08cj , ηmax ≈ 0.5,
(b) U = 1.4 = 1.12cj , ηmax ≈ 0.38, (c) U = 1.52= 1.22cj , ηmax ≈ 0.06, (d) U = 1.35=1.08cj ,
ηmax ≈ 0.62, (e) U = 1.4 = 1.12cj , ηmax ≈ 0.59, (f ) U = 1.52= 1.22cj , ηmax ≈ 0.52.

Once U exceeds cj , no upstream-propagating waves are possible upstream of
the topography. However, over the negative topography, the background current is
reduced and thus localized disturbances may form. We expect these to be trapped
over the topography as any disturbances that drift downstream of the topography are
rapidly swept downstream and out of the computational domain. In figure 7, we show
the shaded density contours for a variety of forcing cases. The topography width is
fixed (a = 1) for all cases shown. The amplitude of the topography is fixed at h = −0.1
and −0.2 for figures 7(a)–7(c) and 7(d)–7(f ), respectively. The upstream velocity and
approximate disturbance amplitude are: (a) U = 1.35 = 1.08cj , ηmax ≈ 0.5, (b) U =
1.4 = 1.12cj , ηmax ≈ 0.38, (c) U = 1.52 = 1.22cj , ηmax ≈ 0.06, (d) U = 1.35 = 1.08cj ,
ηmax ≈ 0.62, (e) U = 1.4 = 1.12cj , ηmax ≈ 0.59, (f ) U = 1.52 = 1.22cj , ηmax ≈ 0.52.
The extremely large amplitude and apparent stability of the trapped disturbances are
surprising. We have confirmed that the disturbance-induced currents are qualitatively
similar to those induced by an upstream propagating ISW of depression. The analogy
with ISWs is not exact, as the disturbance amplitude decreases as U (and hence the
putative disturbance propagation speed) increases. It should also be noted that the
exact shape of the topography is unimportant and trapped disturbances that are
more complex than a single hump (i.e. a double hump) are easily generated by an
appropriate choice of bottom topography.

While a solution procedure for the DJL equation with a fixed value of c and
the bottom boundary condition η(x, g(x)) = g(x) is unavailable for a general N 2(z)
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Figure 8. Disturbance-induced horizontal velocity at the topography crest. —, figure 7(b);
- - -, predictions of (3.1)–(3.3) with h = −0.1 and U = 1.4. . . ., U .

profile (though see Laprise & Peltier (1988) for the constant N2 case), the conjugate
flow eigenvalue problem may be easily converted to a two-point ordinary differential
boundary-value problem,

ηzz +
N2(z − η)

U 2
η = 0, (3.1)

η(h) = h, (3.2)

η(H ) = 0, (3.3)

where U , the value of the upstream velocity, is assumed to be known. The solution
of this problem would correspond to the solution of the DJL equation over a long
flat central portion of the topography where ηxx ≈ 0. The two-point boundary-value
problem is easily solved with a shooting method (note that the auxiliary condition
required for the conjugate flow eigenvalue problem is no longer necessary, and
indeed when topography is included, momentum flux is no longer conserved). As is
evident from figure 8, the solution yields an excellent estimate for the wave-induced
velocities at the crest of the large trapped disturbance, even for topography that
has no flat central portion. The accuracy of the estimate decreases with increasing
topographic amplitude, however, even for the case corresponding to figure 7(e), the
theory accurately predicted the disturbance-induced currents over the majority of
the water column. As U −→ ∞, the stratification term in (3.1) drops out and the
isopycnal displacement is linear, with the maximum absolute value at the bottom, in
agreement with potential flow theory. The two-layer problem corresponding to (3.1)
is easily derived and leads to a fifth-order polynomial equation and will be discussed
in the following section on two-layer theory.

We have subjected the trapped disturbances to two types of perturbation. In
the first series of simulations, the far-upstream density field was perturbed by a
small-amplitude modulated superposition of wave disturbances. The resulting wave
packet was allowed to advect into the trapped disturbance. While some growth
of the wave packets, and even small overturns, occurred during the interaction
with the large trapped disturbance, the trapped disturbance remained essentially
unchanged after the interaction was complete. This result is not unexpected, as the
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background current is supercritical to all linear vertically trapped waves and ISWs
of all amplitudes. A second type of perturbation we investigated consists of a slowly
slackening background current, so that after a set period of time U < cj . It is possible
that a slackening of the background current could produce upstream propagating
ISWs in an efficient manner. However, in the majority of our simulations, the fluid
response was dominated by steepening, and eventually a massive overturning of the
downstream face of the trapped disturbance. A three-dimensional model is required to
study this problem further, and in particular to quantify the considerable irreversible
mixing (Caulfield & Peltier 2000; Peltier & Caulfield 2003) over, and downstream of,
the topography.

4. Comparison with two-layer flows
The literature on the flow of a two-layer fluid over topography is extensive, though

a good overview can be obtained from the monograph by Baines (1995), especially
chapter 3. Baines discusses experimental results and suggests that many of the
qualitative aspects of the experiments can be predicted on the basis of the eKdV
equation. As mentioned in § 1, the solitary wave solutions of the eKdV equation are
bounded above by the limit of flat-centred waves, in contrast to the solitary wave
solutions of the KdV equation which are bounded above by wave breaking. However,
while the eKdV includes both quadratic and cubic nonlinear terms, it is formally not
a higher-order theory than that leading to the KdV equation, since both keep only
the first-order dispersive term. An examination of figure 3.19 of Baines (1995), which
shows the numerical integration of a forced eKdV equation in different parameter
regimes, as originally published in Melville & Helfrich (1987), reveals a considerable
qualitative similarity to the results of § 3. One notable difference is the small size of the
trapped disturbance for the supercritical case in figure 3.19 of Baines (1995). As the
solitary wave solutions of the eKdV equation have a limiting amplitude (Baines 1995,
equation 3.7.11) it seems reasonable to compare this limiting behaviour to the fully
nonlinear solitary wave amplitude in a two-layer fluid. The latter corresponds to
the conjugate flow, as in the continuously stratified case. Under the Boussinesq
approximation, the solutions for the conjugate flow amplitude for the two-layer case
indicate that the displaced interface is found at the mid-depth and the propagation
speed of the disturbance is independent of the initial interface position (Lamb 2000,
equations 31 and 32, which match the expressions derived in Amick & Turner 1986).
In figure 9, we compare the conjugate flow amplitudes to the predictions from eKdV
theory and find that Baines’ assertion (Baines 1995, p. 129) that the eKdV theory is
appropriate for interfaces found between z = 0.35H and 0.65H of the total depth,
with rapid decay of validity outside of this range, is correct. Note, that this implies
that for the results discussed in § 3, the eKdV, in pointed contrast to conjugate flow
theory and its extension discussed above, does not provide an accurate predictive
tool for the large-amplitude responses found over, and upstream of, the topography.
Indeed, amplitudes of the actual response are more than double the size of the
maximal response predicted by eKdV theory for ‘dissipationless bores’ (or ‘inviscid
bores’ in Baines’ terminology) with an even larger discrepancy for the large trapped
disturbances.

A two-layer analogue for the theoretical description of the vertical structure at
the crest of the trapped disturbance, (3.1)–(3.3), can be derived by applying the
arguments found in Lamb (2000), making the Boussinesq approximation (with a
reference density ρ0) for simplicity. Consider an upstream state characterized by a
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Figure 9. Maximal isopycnal displacement for two-layer flow under the Boussinesq
approximation as a function of undisturbed interface height. —, conjugate flow theory;
- - -, eKdV theory.

constant inflow velocity U , depth H , lower-layer thickness h1, lower (upper)-layer
density ρ1 (ρ2). The downstream state has a total depth H + h, lower-layer depth
h∗

1 = h1 + b, and lower (upper)-level velocity U1 (U2). Two algebraic equations can
be found by demanding conservation of volume flux for each of the two layers, and
a third can be derived by writing down Bernoulli’s theorem for a streamline along
the surface and the bottom, then taking the difference between the two expressions
(see Lamb 2000 for details). The three equations for the three unknowns (b, U1, U2)
in terms of the parameters defined above and with the two additional parameters

N2
1 = (ρ1 − ρ2)g, (4.1)

γ = gρ2, (4.2)

defined for convenience (as in the continuously stratified case we have absorbed ρ0),
read

Uh1 = U1(h1 + b), (4.3)

U (H − h1) = U2(H + h − h1 − b), (4.4)

0 = 1
2
U 2

[
(H − h1)

2

(H + h − h1 − b)2
− h2

1

(h1 + b)2

]
− γ h − N 2

1 b. (4.5)

These may be reduced to a single fifth-order polynomial equation in b. However, this
equation does not allow an analytical solution, though it is readily solved numerically.
In order to be physically relevant, solutions must satisfy 0 <h1 + b < H + h. In
figure 10, we show the computed layer thicknesses as a function of the inflow
velocity (scaled by the conjugate flow speed) for parameters corresponding to the
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Figure 10. Layer thicknesses (normalized by the upstream depth H ) for the two-layer version
of the problem given by (3.1), (3.2) and (3.3) as functions of the inflow velocity (normalized
by the conjugate flow speed cj ). Results for two different topography amplitudes are shown
(—, h = −0.1; - - -, a = −0.2). The U −→ ∞ limit is indicated by dotted lines.

disturbance over the mid-point of the depression in the simulations of the previous
section. It is clear that the range of inflow speeds for which the trapped disturbance
has a large amplitude increases significantly as the topography amplitude increases.
For isolated topography, such as (2.24), this implies that the theory developed in
the present article will provide a good approximation when U is near cj . As U

increases and the amplitude of the trapped disturbance decreases, the ηxx term in
the DJL equation, which is largely determined by the topography for the trapped
disturbances, will become increasingly important when compared with the ηzz term,
thereby invalidating the approximation made in applying the theory.

Another aspect of WNL theory, namely the predicted range of inflow speeds for
which resonant generation is efficient in producing an upstream response, may be
tested within the two-layer setting. The WNL estimate we employ is that given by
equations (7.4a) and (7.4b) of Grimshaw & Smyth (1986) which are a form of their
hydraulic theory-based estimate (7.1) specialized to two-layer flow. However, since
(7.4a) and (7.4b) of Grimshaw & Smyth (1986) are set up to discuss a laboratory
experiment in which the topography is a towed obstacle near the surface, the formulae
(Grimshaw & Smyth’s d , in particular) have been modified for the present situation.
In figure 11, we show the predicted range of inflow speeds along with the linear long-
wave speed and the (constant) conjugate flow speed as functions of the undisturbed
interface height. We non-dimensionalize the velocities by the mode-1 linear long-wave
speed for the two-layer case in which the interface is at the mid-depth. The amplitude
of the topography is h = −0.1. From the figure, we see that the upper bound predicted
by WNL exceeds the conjugate flow speed for interface heights between the mid-
point and about 0.83. For interface heights above 0.85, the WNL upper bound is
significantly lower than the conjugate flow speed, and the upper bound on the range
of inflow speeds is underestimated. In figure 11, we have also included the range of
inflow speeds that yielded upstream-propagating ISWs for the continuously stratified
case discussed in § 3 with (z0, d) = (0.8, 0.05). For this case, the two-layer WNL
upper bound is reasonable (an error of approximately 10 %), though for an arbitrary
stratification it is unclear where the WNL upper bound curve crosses the curve of
conjugate flow speeds.
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Figure 11. —, the linear long-wave speed; . . ., the (constant) conjugate flow speed, and the
range of inflow speeds U predicted by fKdV theory to yield efficient resonant generation of
upstream propagating ISWs (– · –, upper bound; - - -, lower bound), as functions of interface
height. The mode-1 linear long-wave speed for the continuously stratified case discussed
(z0, d) = (0.8, 0.05) is indicated by a circle. The actual range over which resonant generation
efficiently generates upstream propagating ISWs is given by the vertical solid line terminated
by triangles.

Figure 11 shows no major systematic error for the lower bound predicted by
WNL (as it does for the upper bound). However, for low inflow speeds the upstream
response consists of many linear waves along with very small ISWs, making it difficult
to pick a precise point below which we can say the numerical simulations yield no
upstream propagating ISWs.

The two-layer results, and the inaccuracies of the WNL theories in this context, are
consistent with attempts to use the eKdV equation to model large-amplitude ISWs in
a continuously stratified fluid (K. G. Lamb, personal communication). The failure of
WNL theory to provide a good upper bound on inflow speeds for resonant generation
stems from a failure to include ‘all the nonlinearity’ that governs fully nonlinear
ISWs. In contrast, the conjugate flow solution, which makes no approximation of the
nonlinearity governing the ISWs, but neglects dispersion in its entirety, provides an
excellent upper bound. As discussed above, the lower bound is considerably more
subjective and the applicability of the WNL estimate of it will probably depend
on any given application or experimental set-up. A particular concern is that the
amplitude of the topography can be expected to play a significant role in setting
the lower bound. For example, with U = 0.9, close to the lowest U for which a
clear upstream propagating wavetrain is produced when h = −0.1, we found that
increasing the topographic amplitude led to a rapid increase in the amplitude of the
leading upstream-propagating ISW (h = −0.1, −0.15 and −0.2 yields ηmax ≈ 0.03,
0.08 and 0.11).

The two-layer situation provides insight into the behaviour on the downstream
side of the topography. In particular, the numerical solutions of the eKdV equation
shown in the middle panel of figure 3.19 of Baines (1995) have a downstream



286 M. Stastna and W. R. Peltier

response not unlike figures 3 and 4 of the present study, though the amplitude, and
possible instability (see figure 3) of the downstream response cannot be described
by the eKdV equation. The importance of shear instability and subsequent turbulent
breakdown is apparent in figures 3.17 (bottom panel) and 3.21 of Baines (1995)
(much more clearly in the latter), which show several experimental realizations of
what Baines and Lawrence (Baines 1995, p. 133) refer to as a ‘supercritical leap’. All
three experimental realizations exhibit turbulent behaviour, and hence it is premature
to make a comparison with the two-dimensional simulations reported on in this
investigation. However, we do note that a suite of simulations performed with (z0, d) =
(0.8, 0.03) led, not unexpectedly, to a greater incidence of shear instability in the
downstream response. Thus, by choosing a more diffuse pycnocline it is possible to
stabilize the downstream response while maintaining the qualitative characteristics
(the ‘supercritical leap’) of the experiments. Indeed, in figure 3 of this investigation,
the instability does not set in over the topography as in the experiments. The
large-amplitude downstream response merits detailed future investigation, though a
three-dimensional model will probably be required in order to explore the portions
of parameter space in which turbulence is important.

5. Generation of mode-2 waves
The results of § 3 leave little doubt as to the efficiency of the resonant generation

mechanism for generating mode-1 waves. Moreover, a variety of theoretical tools
are available for the description of mode-1 waves generated both upstream and
downstream of the topography. This theoretical support structure is, in large part,
not applicable to higher mode waves. Considering mode-2 waves in particular, this
is because shorter mode-1 waves may propagate at the same speed as the mode-2
finite-amplitude wave, and thus can drain energy from any would-be solitary wave.
Notice that this precludes an application of the variational formulation for mode-2
waves. A typical experimental set-up for generating mode-2 waves consists of a region
of intermediate density fluid that is suddenly allowed to collapse by the rapid removal
of a barrier. The collapse leads to the formation of a gravity current in the, generally
sharp, pycnocline. For appropriate choices of parameters (intermediate density fluid
volume, pycnocline thickness, maximum buoyancy frequency in the pycnocline, etc.)
mode-2 waves propagate upstream faster than the gravity current. The efficacy of this
generating mechanism can be understood as being due to the fact that a projection
of the initial perturbation onto the linear long-wave modes (which are complete, Yih
1965) will deliver the largest amplitude at mode-2.

The resonant generation mechanism for isolated bell-shaped topography does not
necessarily deliver a perturbation with the largest component at mode-2. Still, we
have found that it is possible to generate mode-2 waves resonantly. Figure 12 shows
the evolution of a mode-2 solitary-like wave for a stratification with z0 = 0.55 and
the forcing parameters (U, h, a) = (0.275, 0.1, 1), note U = 1.04c

(2)
lw . The wave-induced

horizontal velocities are shaded (values indicated by the bar) and density contours
are indicated by black lines. Figure 12(a) shows the mode-2 wave at t = 10.7. It
can be seen that despite its relatively small size, ηmax ≈ 0.08, the mode-2 wave is
breaking. Moreover, the breaking region is preferentially found below the centre of
the undisturbed pycnocline. A small-amplitude tail is barely visible, trailing behind
the mode-2 wave. In figure 12(b), we show the mode-2 wave at t = 17.8. At this point
in time, the leading mode-2 wave is approaching the topography crest. The breaking
region now extends some distance behind and below the main wave. A mode-1 tail
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Figure 12. Shaded wave-induced horizontal velocities with superimposed black density
contour lines for the evolution of a resonantly generated mode-2 solitary-like wave. (U, h, a) =
(0.275, 0.1, 1). (a) t = 10.7, (b) t = 17.8 the location of the crest for each of the two waves is
indicated by an asterisk at the top boundary, (c) t = 28.5.

is clearly visible behind the leading wave. The mode-1 tail is terminated by a second
smaller-amplitude mode-2 wave. The approximate crests of each of the two mode-2
waves are indicated by an asterisk at z = 1. Subsequent evolution is dominated by
the extension of the breaking region farther downstream of the leading mode-2 wave.
This is shown at t = 28.5 in figure 12(c). The second mode-2 solitary-like wave has
been consumed by the downstream extension of the breaking region. The breaking
region consists of Kelvin–Helmholtz-like billows that originate in the leading mode-2
wave and propagate down the topography slope. The similarity with simulations of
pulsating downslope windstorms (Scinocca & Peltier 1989) is striking. While care
must certainly be exercised in interpreting the flow delivered by a two-dimensional
numerical model, it seems obvious that, in the present case, the importance of wave-
breaking and the resulting downslope vortex shedding far outweighs wave damping
due to a small-amplitude mode-1 tail.

A fair question to ask at this point is whether these results could have been
predicted a priori. If we consider the weakly nonlinear expression for the ISW
propagation speed (2.14), we note immediately that the changes in propagation speed
are determined entirely by the magnitude of the nonlinear coefficient r10 for a given
mode. Thus, according to KdV theory, a larger value of r10 allows a larger range
of ISW amplitudes (recall that KdV theory predicts that ISW amplitude is always
limited by wave breaking), and thus presumably a larger range of inflow velocities
for which ISWs are generated. For example,

ηj (z0 = 0.55) = 0.14ηj (z0 = 0.80),
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while

r
(1)
10 (z0 = 0.55) = 0.11r

(1)
10 (z0 = 0.80),

a very reasonable level of agreement (the superscripts denote mode number). With
z0 = 0.55, mode-2 waves are breaking limited, however,

r
(2)
10 (z0 = 0.55) = 1.06r

(1)
10 (z0 = 0.80)

and

r
(1)
10 (z0 = 0.55) = 0.1r

(2)
10 (z0 = 0.55),

and thus mode-2 waves can be reasonably expected as the result of flow over
topography for a significant range of inflow velocities. In contrast, we find

r
(1)
10 (z0 = 0.80) = 7.0r

(2)
10 (z0 = 0.80),

and thus we do not expect mode-2 solitary-like waves to be generated in an efficient
manner when z0 = 0.8. This has been confirmed by the numerical simulations.

For a given stratification and background velocity profile it is computationally
inexpensive to compute r

(1)
10 and r

(2)
10 . The ratio of the two gives a simple and

rough assessment of whether resonant generation of mode-2 solitary-like waves can
reasonably be expected. This is useful for situations in which the background current
increases slowly, such as the semidiurnal tide in fjords, passing through the mode-2
linear long-wave speed first and exceeding the mode-1 linear long-wave speed only a
considerable length of time (of the order of an hour) later. Comparing the present
criterion with equation (7.1) of Grimshaw & Smyth (1986), we find that in our criterion
we are neglecting the role of hill amplitude. Given the rather poor upper bound on
the range of inflow speeds that the WNL criterion of Grimshaw & Smyth yields in
the two-layer case with topography of moderate amplitude (h = −0.1), as discussed
in § 4, this seems a reasonable alternative. It should be noted that we employ WNL
as a proxy for fully nonlinear solutions of the DJL equation (especially the mode-2
solutions which cannot be found by the variational technique we employ), as opposed
to a stand-alone theory. In the future, it would be desirable to construct a reliable
numerical solver for the higher-mode solutions of the DJL equation, though the
problem of fully nonlinear mode-2 waves with mode-1 tails is numerically non-trivial,
as discussed in Rusas & Grue (2002) in the context of three-layer fluids.

We have found that with negative topography, it is possible to generate trapped
mode-2 disturbances over the topography that match mode-2 solutions to the
boundary-value problem, (3.1)–(3.3). This is interesting in itself since for the strati-
fication employed, mode-2 waves are breaking limited and thus there is no a priori
known value of U above which no upstream propagating mode-2 disturbances are
possible (though see Lamb & Wilkie (2004) for an extension of the conjugate flow
concept to waves with trapped cores that is successful in describing breaking waves
in some circumstances). However, the mode-2 trapped disturbances we have found
are considerably smaller in amplitude than their mode-1 counterparts. We note that it
would certainly be possible to construct a model stratification which allows for large-
amplitude non-breaking mode-2 trapped disturbances and that does not explicitly
preclude mode-1 waves, though it is unclear whether such a stratification would have
any relevance for studies of the coastal ocean. An alternative avenue for future work
would attempt to mimic numerically the experimental set-up employed by Mehta
et al. (2002) to generate resonantly mode-2 solitary waves with radiating tails by
gravity currents that intrude into a layered fluid.
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6. Discussion
Taken as a whole, the simulations discussed in the previous sections demonstrate

that the resonant generation mechanism for ISWs is extremely robust. As mentioned
in § 1, the literature on resonant generation is heavily slanted toward weakly nonlinear
theory. This implies that for the case of small-amplitude topography, the amplitude of
the resonantly generated waves is expected to exceed the amplitude of the topography
itself, but no predictions as to the limiting ISW amplitude and the nature of the
upper bound can be given. Fully nonlinear theory based on the DJL equation
does allow the calculation and classification of the upper bound on ISW amplitude
and we have chosen to concentrate on situations for which the ISW amplitude is
bounded above by the conjugate flow amplitude (the limit of flat-centred waves).
This allowed us to compare with the particularly simple conjugate flow theory
for two-layer fluids as well as the weakly nonlinear theory based on the eKdV
equation that has been used to interpret experiments in the past (Baines 1995). We
found that conjugate flows for the continuously stratified case match the limiting
upstream propagating waveform (a ‘dissipationless bore’) and that the two-layer
conjugate flows are reasonable approximations of the continuously stratified case.
The weakly nonlinear theory (eKdV), however, underpredicts the amplitude of the
limiting waveform, for our choice of stratification by more than 50 % of the actual
value. The two-layer situation was employed to demonstrate that weakly nonlinear
theory (based on the fKdV equation) incorrectly predicts the upper bound on the
range of inflow velocities for which a significant upstream response is obtained. In
particular, in a two-layer situation, the WNL theory underpredicts the true upper
bound for some interface heights and overpredicts for others. The conjugate flow
theory, on the other hand, provides the correct upper bound in all cases considered.
The lower bound given by WNL is much more reasonable, though the issue is
confounded by the sensitivity of the amplitude of the resonantly generated upstream-
propagating ISWs to the topography amplitude. Thus, for small waves, a precise
cutoff below which ‘no upstream propagating ISWs are generated’ is subjective.
Nevertheless, the present results suggest that the WNL estimate of the lower bound is
reasonable.

The weaknesses of WNL described above are consistent with past attempts at
comparing weakly nonlinear theory and fully nonlinear waves. Lamb & Yan (1996)
compared weakly nonlinear descriptions of an undular bore with time-dependent
integrations of the full Euler equations (under the Boussinesq approximation). They
found that first-order theory improves upon leading-order theory, but its use to
describe finite-amplitude waves requires subjectively choosing several undetermined
constants (see Lamb & Yan 1996 for details). Perhaps more to the point, Lamb (1999)
found that in describing ISWs near the limiting amplitude, the choice of vertical
coordinate (the Eulerian z employed in the present paper, or the upstream isopycnal
height y = z − η(x, z) sometimes referred to as Euler–Lagrange theory) profoundly
influences the accuracy of the weakly nonlinear theory. Moreover, Lamb (1999)
demonstrated that Eulerian weakly nonlinear theory produces better results for the
widely used exponential density profile, while Euler–Lagrange weakly nonlinear theory
produces better results for a single pycnocline stratification, such as that used in this
study. This implies that instances in which choosing the appropriate vertical coordinate
improves the fit of theory with oceanic measurements, as in Trevorrow (1998), are not
general. Indeed, given that it is numerically inexpensive to solve the DJL equation
for a given stratification, it is perhaps best to use WNL as a qualitative as opposed
to a quantitative tool.
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The conjugate flow theory succeeds in describing both the propagation speed
and the vertical structure of the limiting ISW, essentially exactly. More importantly,
the observation that no upstream propagating ISWs are possible for inflow speeds
above the conjugate flow speed, cj , led us to investigate the fluid response for
inflow speeds slightly larger than cj . We found that for a band of inflow velocities
above cj , large disturbances form, and remain trapped, over the topography. The
shape of these disturbances is essentially specified by the topography (and thus for
isolated topography the disturbances resemble ISWs). However, the amplitude of the
disturbances can reach 200 % of the limiting ISW amplitude. Despite their large
amplitude, these disturbances remain laminar and proved stable under a variety
of upstream introduced perturbations. Indeed, the large trapped disturbances are
solutions of the DJL equation with c specified to cancel the upstream velocity, and
the isopycnal displacement at the bottom chosen to match the topography. As such,
it is possible to construct a theory for the structure at the crest of the trapped
disturbances by neglecting isopycnal curvature (the ηxx term in the DJL equation).
This theory is similar in structure to the conjugate flow theory, but momentum
flux is no longer conserved. We found that the theory provides excellent (and
computationally inexpensive) estimates for properties at the crest of the largest
trapped disturbances, with a decrease in accuracy as the inflow speed increases and
the trapped disturbance amplitude decreases. We constructed a two-layer analogue of
the continuously stratified theory and used it to show that the range of inflow speeds
for which large trapped disturbances are formed increases rapidly with increasing
topography amplitude.

For a situation in which the inflow speed changes in time, the large trapped
disturbances provide a possible source for a substantial amount of irreversible mixing.
Indeed, a current that slackens from a value greater than cj to one less than cj will
generally lead to large-scale overturning events over the topography as the large
trapped disturbance breaks up. The investigation of these breaking events will require
three-dimensional computations and provides a clear direction for future work.

As the weakly nonlinear theory of resonant generation makes no distinction between
mode-1 and higher-mode waves, we attempted to generate mode-2 solitary-like waves
resonantly. For stratifications with a main pycnocline near (but not at) the mid-depth,
the generation proceeded much as for mode-1 waves. In agreement with theory, the
mode-2 waves were trailed by a small-amplitude mode-1 tail. It is this tail that
precludes true mode-2 solitary waves. However, we found that for a single pycnocline
stratification, mode-2 waves were breaking for all but the smallest amplitudes, and
that it is the wave-breaking and not the mode-1 tail that dominates energy dissipation
and wave decay. In contrast to previous literature on mode-2 waves that computed
mode-1 waves and reflected about a line of symmetry to produce mode-2 waves
(Tung et al. 1982; Terez & Knio 1998), we have found that mode-2 solitary-like
waves are highly asymmetric in the vertical.

The results discussed in this paper are more relevant to a laboratory setting (i.e. an
obstacle is suddenly accelerated in still stratified fluid) than an oceanic situation,
because the ‘forcing’ in the coastal ocean is dominated by the barotropic tide.
Nevertheless, in our previous work on tidally generated ISWs over the sill at Knight
Inlet (Stastna & Peltier 2004), we found that the impulsively started simulations
provided insight into the considerably more complex simulations of the time varying
tidal forcing. Furthermore, there are reported instances of resonant generation in the
ocean (see Bogucki et al. 1997; Wang & Redekopp 2001 for discussion), and these
provide a rich source of problems for future investigation.
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An important issue relevant to the laboratory scale that remains for future
investigation is whether either three-dimensional or viscous effects can destabilize
the large trapped disturbances. We plan to examine these issue using numerical
simulations in the near future. While the transient portion of the impulsively started
simulations is of most potential interest to experimentalists (who cannot tow an
obstacle past the upstream wall of the tank), the long-term evolution of the simulations
is of obvious theoretical interest, and serves as another potential avenue for future
investigation. Of particular interest are the existence and characteristics of any limit
cycles as the inflow speed and topography amplitude are varied.
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